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ABSTRACT 

 Photonic crystal structures and their applications are an active growing research area 

in the scientific community. The photonic crystals can have a complete bandgap for proper 

choice of the structure and dielectric contrast. Photonic crystal structures are very useful in 

many areas such as photovoltaic devices, infrared sources and optic fibers.  

The photonic crystal structures have been used in the thermal photovoltaic devices 

and as a narrow band infrared emitter. In this thesis we investigate the angular variation of 

absorption and thermal emission from the two-dimensional metallic and metal-dielectric 

photonic crystal structures by using rigorous scattering matrix method. We found that the 

thermal emission of these photonic crystals at different wavelengths is redistributed into 

different emission angles. The photon emission are partially suppressed at long wavelengths 

and enhanced at the shorter wavelength range. We utilized the surface plasmon models to 

describe the angular dependent absorption. The strong spectral variation of the thermal 

emission with angle should be accounted for the thermo-photovoltaic devices utilizing 

photonic crystals. 

 We also propose a metallic photonic crystal for incandescent filaments. We simulated 

the tungsten photonic crystals and found that by using the photonic crystals it is possible to 

increase the lifetime and brightness of light bulbs. We also present results for metal-dielectric 

patches at infrared length scales and find absorption peaks can be tuned by the geometry of 

the patch.  
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CHAPTER 1 INTRODUCTION 

2D Photonic Crystals 

We use extensively the two dimensional (2D) photonic crystals. Here we summarize 

the basic properties of 2D photonic crystals. 2D photonic crystals are artificial structures with 

periodic dielectric constants in two dimensions and can exhibit photonic band gaps, in which 

electromagnetic waves in a certain wavelength range can not propagate in the plane of the 

structure. Due to the ease of fabrication compared to 3D photonic crystals, the 2D photonic 

crystals have attracted a great deal of attention in recent years. Figure 1.1 shows the 2D 

photonic crystal structures with both square and triangular lattice of holes going through a 

slab.  

(a) (b)

 

Figure 1.1 (a) 2D photonic crystal structure with square lattice of holes in a dielectric slab. 

(b) 2D photonic crystal structure with triangular lattice of holes in a dielectric slab. 

Diffracting Structures 

In this thesis we consider incident waves normal to the 2D photonic crystal and in 

general out of the plane of the structure at an angle to the normal direction, in contrast to the 

propagation in the plane of the structure. For this situation of waves incident from out of the 
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plane of the structure, the 2D photonic crystals are diffracting grating structures due to the 

periodic arrangement of the holes or cylinders in a substrate. Figure 1.2 shows both the 

incident and reflected field components. The wave vector and electric field vector of the 

incident field could be described as, 

zkykxkk iziyixi ˆˆˆ ++=     (1.1) 

))((r)k(
0i EEE i zkykxkjj zyxee ++−− == 0    (1.2) 

Ei

Er

x

z
y

 

Figure 1.2 The schematic of the incident wave and reflected wave the 2D square lattice of the 

photonic crystal structure. 

Using the Rayleigh expansions [1, 2] the reflected field vector could be expressed as, 

r)k(

,
r

r,mnE j

nm
mneB −∑=      (1.3) 

where the integers m and n are defined as the order of the diffracted waves and the Bmn is the 

magnitude of the (m, n) order diffracted wave. 



www.manaraa.com

 3

According to the phase matching condition and the Floquet condition, the wave 

vector of the reflected field is, 

zkykxkk mnzrynxmmnr ˆˆˆ ,, ++=     (1.4) 

where the kxm, kyn and kzr,mn are expressed as, 

2222
, ynxmimnzr

yyyn

xxxm

kkkk

nGkk
mGkk

−−=

+=
+=

     (1.5) 

where the Gx and Gy define the unit vectors of the reciprocal lattice vector G. The Gx and Gy 

are inversely proportional to the lattice constant a of the 2D photonic crystal and for the 

square lattice in shown Figure 1.2 they can be expressed as,  

Gx=Gy=2π/a        (1.6) 

If k2
zr,mn is larger than zero, then the reflected wave is a propagating wave. Or else the 

reflected wave is an evanescent wave with exponentially decaying field magnitude away 

from the lattice interface if k2
zr,mn is less than zero. 

Subwavelength Hole Array 

 In 1998, T. W. Ebbesen et al. discovered the extraordinary optical transmission 

through the sub-wavelength holes array in a thin film metal [3]. They fabricated a two 

dimensional arrays of cylindrical cavities in a thin (0.2 μm) layer metal film which sits above 

the quartz substrate. Several distinct features were found in the measured zero-order 

transmission spectrum of the structure [Figure 1.3 (a)].  
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 The holes array structures fabricated by T. W. Ebbesen et al. are in subwavelegnth 

regime. The waveguide modes in a single cylindrical cavity only exist above certain cutoff 

frequency [Figure 1.4]. The first order waveguide mode TE11 is formed in the holes at the 

cutoff wavelength λ=3.42R, which is smaller than the period of the hole array. Thus there are 

no waveguide modes formed in the holes above the wavelength corresponding to the period 

of the hole array. 

 

Figure 1.3 (a) Zero-order transmission spectrum of a subwavelength holes array in a metallic 

film with period of 0.9 μm and metal layer thickness of 200 nm [3]. (b) Top view 

of the holes array. R is the radius of the hole. 

 

 

Figure 1.4 The first three orders of TE waveguide modes in a circular cavity 

(a) (b) 

R 

TE11

TE10 TE20

Frequency

Transmission
z
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Figure 1.3 (a) shows is a distinctive transmission minimum near the wavelength 

corresponding to the pitch size of the holes array, which could be explained by the Wood’s 

anomaly, where the diffracted order changes from evanescent to propagating wave,   

22,
mn

a
mn

+
=λ      (1.7) 

The wavelength from the first Wood’s anomaly (m or n is zero) is at a, which is the 

period of the hole array.   

There is one remarkable transmission peak when the wavelength is slightly larger 

than a, which is caused by the excitation of surface plasmons at the metal interface when the 

momentum of the surface plasmons that match the momentum of the incident photons and 

the grating, 

yxxsp mGnGkk ±±=     (1.8) 

where the Gx and Gy have the same definition as in equation 1.6. The other transmission 

peak near the wavelength that corresponds to a·n (n is the refractive index of quartz) is the 

surface plasmons at the metal-quartz interface.   

 L. Martín-Moreno et al. later fabricated the two dimensional hole arrays in a thin free-

standing metal film [8]. The zero-order transmission of the freestanding thin film is measured 

[Figure 1.5]. A strong transmission peak at the wavelength slightly larger than the period of 

the hole arrays was observed, which would not expected by the classical waveguide modes 

since the hole arrays are in sub-wavelength regime. One difference from the metal film onthe 

quartz substrate in [3] is that the freestanding metal film has the same metal-dielectric (air) 
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interface on the two sides. Surface plasmons are excited at both metal-dielectric interfaces of 

the freestanding metal film. The surface plasmons at the two interfaces are strongly coupled, 

which leads to the extraordinary transmission of light near the wavelength slightly above the 

period of hole arrays. The enhancement factor, which is the ratio of the transmitted intensity 

to the incident intensity normalized to the area of the holes, can exceed a factor of 5. 

 

 

 

 

 

 

Figure 1.5 Experimental zero-order power transmittance at normal direction for a square 

array of holes (period 750nm) in a freestanding Ag film (thickness 320nm). Inset 

shows the SEM of the perforated metal film [8]. 

Scattering Matrix Method 

 The main simulation method used in the thesis is the rigorous Scattering Matrix 

Method. The Scattering Matrix Method is based on the well-known Transfer Matrix Method 

(TMM) [9, 5]. The Scattering Matrix Method can be used to calculate the transmission and 

reflection from layer by layer structures [Fig 1.2]. The slab material in z direction is 

homogeneous. In each layer a scattering matrix is defined, 
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( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Ω
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⎛
Ω
Ω

−

+
−

−
−

+

i

ii

i

i s 1

1

     (1.9) 

in which the Ωi
+ and Ωi

- are the Fourier components of electric fields in forward and reverse 

directions respectively in the ith layer. Then the total S matrix can be obtained by the standard 

recursion relation through all the layers in the entire structure. 

 

 

 

 

Figure 1.6 (a) definition of S matrix for photonic crystal structure with n layers. (b) definition 

of S matrix for an individual layer. 

To calculate the S matrix for each layer the continuity condition of E and H fields at 

each interface is used. The dielectric constant ε in each individual layer only varies with x 

and y. The Fourier transform of the ε and ε-1 is, 

∑

∑
−−−

−

=

=

ij

rjG
ij

ij

rjG
ij

ij

ij

er

er

)(11

)(

)(

)(

εε

εε

     (1.10) 

where r=x x̂ +y ŷ . The z dependence of the in-plane electric fields can be obtained by 

decomposing the time harmonic Maxwell Equation, 
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0)()()(
0)()(
=+×∇

=−×∇
rErjrH

rHjrE
ωε
ωμ

    (1.11) 

which leads to, 

xyxy

yxyx

HjkH
x

H
yyxyjk

E
z

HjkH
y

H
xyxxjk

E
z

0
0

0
0

)](
),(

1[1

)](
),(

1[1

+
∂
∂

−
∂
∂

∂
∂

=
∂
∂

−
∂
∂

−
∂
∂

∂
∂

=
∂
∂

ε

ε
   (1.12) 

Substitute ε-1 in equation 1.10 into 1.12 and rewrite the fields in the forms of equation 

1.3, we obtain, 

xij
mn

xmnymnymnxmnmnij
yij

yij

yij
mn

xmnymnymnxmnmnij
xij

xij

HjkHkHk
k
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E
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∂

∑

∑

−

−

ε

ε
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The other two equations for the H fields can be derived through the same procedures. 

The equation 1.7 can be rewritten in a matrix form with column vectors E=(..., Eij,x, Eij,y, ...)T 

and H=(..., Hij,x, Hij,y, ...)T, 

HME
z 1=

∂
∂      (1.13) 

And similarly, 

EMH
z 2=

∂
∂      (1.14) 

Combining equations 1.13 and 1.14 we get, 



www.manaraa.com

 9

EMME
z 212

2

=
∂
∂      (1.15) 

which is an eigen-value problem and can be solved for each layer using the fields continuity 

boundary conditions at each interface. The total S matrix for the entire layered structure then 

can be obtained by applying the standard recursion relations to the scattering matrices (Si) in 

each layer. The reflection and transmission of the layered structure then can be calculated 

from the total S matrix. 

One of the advantages of the Scattering Matrix Method is that the parallel 

computational algorithm can be easily realized with each frequency sent to an individual 

processor since the scattering matrix simulation is performed in frequency domain. The final 

frequency response of the structure can be found by concatenating the results at different 

frequencies. 

Research Motivation 

The 2D photonic crystal structures have found many applications in diverse areas. 

Due to the diffracting effect in the photonic crystals, their reflection, transmission and 

absorption have strong angular dependence. In the recent research work of applying photonic 

crystals in the solar cells to increase the efficiency, the emission from photonic crystals is 

considered only in a small angle near the normal direction [10]. In this thesis we study the 

angular dependence of the emission characteristic of the 2D photonic crystal in all the angles, 

from 0° to 70°. Furthermore, the metallic 2D photonic crystals are proposed to enhance the 

thermal emission of incandescent sources. We mainly focus on the 2D metallodielectric and 

metallic photonic crystal structures [Figure 1. 6]. In both the metallodielectric and metallic 
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photonic crystals the two dimensional hole arrays are sitting above a optically thick substrate, 

which results in zero transmission and converted the extraordinary transmission in a thin 

metal film into the enhanced absorption at the wavelength near the period of the hole arrays. 

In the metallic photonic crystal there is no transmission and the signature of the resonance is 

a strong reflection minimum accompanied by an absorption maximum. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 (a) Schematic of the 2D metallodiectric photonic crystal. (b) Schematic of the 2D 

metallic photonic crystal. Both the insets shows the viewgraphs of the photonic 

crystals. 
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Organization of the thesis 

The rest part of the thesis is organized as follows. Chapter 2 investigates the angular 

distribution of absorption and thermal emission in both 2D metallic and metallo-dielectric 

photonic crystals. Chapter 3 discusses the enhancement of thermal emission by utilizing the 

2D tungsten photonic crystals. 

In Chapter 4, periodic arrays of microstrip patches are discussed. The microstrip 

patch arrays can exhibit broadband infrared absorption near IR wavelength if properly 

designed. This chapter serves as suggestions for future work. 
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CHAPTER 2  ANGULAR VARIATION OF ABSORPTION AND 
THERMAL EMISSION FROM PHOTONIC CRYSTALS 

A paper published in J. Opt. Soc. Am. B., 26, 1808-1817 (2009) 
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Abstract 

The absorption and thermal exitance of two dimensional metallic and 

metallodielectric photonic crystals is simulated with rigorous scattering matrix methods. 

These photonic crystals have strong thermal exitance and absorption peaks in the normal 

direction that shift to larger and smaller wavelengths as the angle varies away from the 

normal direction. These photonic crystals redistribute the thermal emission at different 

wavelengths into different emission angles. There is partial suppression of photon emission 

at long wavelengths and enhancement at the shorter wavelength spectral range where the 

thermal exitance has a maximum. Surface plasmon models describe well the angular 

dependent absorption. Thermo-photovoltaic devices utilizing photonic crystals need to 

account for the strong spectral variation of the thermal exitance with angle.  
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Introduction 

Metallic and metallodielectric photonic crystals (PCs) have attracted much interest in 

modifying the thermal emission from the black-body [1 - 4] spectrum. These PCs exhibit a 

sharp absorption feature at a wavelength near the lattice period (a). The thermal exitance of a 

heated photonic crystal can be considered to be the convolution of the black-body emission 

with the absorption profile of the PC. Thus, thermal emission of the PC is observed in a 

narrow band of wavelengths controlled by the absorption profile. Such photonic crystal based 

selective emitters have diverse applications as infrared sources, infrared sensors, and efficient 

incandescent sources.  

This selective wavelength emission from PCs has attracted much interest in novel 

thermophotovoltaic (TPV) systems [5 - 7]. PCs could capture solar radiation and be heated to 

an elevated temperature T. The PC is proposed to emit in a narrow band of wavelengths 

(centered at frequency ν) which would be captured by a low-band gap absorber, with a band 

gap Eg, below the peak of the photon energies (Eg<hν), thus converting solar photons to 

electrical current. Energy conversion efficiencies have been examined for temperatures T in 

the range of 1100-1300 K, corresponding to the narrow band gap GaSb solar absorbers of 

band gap 1.7 eV. Such PCs can also convert waste heat from engines and mechanical 

processes into useful forms of energy.  

We critically examine the fundamental basis of this energy conversion process, 

especially the wavelength selective emission. Narrow band thermal emission from PCs is 

observed in a near normal direction, typically in a cone of 10-15º near the normal. A central 

issue is how the PC emission differs from a black-body of the same temperature (T). It has 
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been suggested that, in a small cone of angles near the normal direction, the enhanced 

emission of the PCs at the spectral range is due to the funneling of the thermal emission from 

the forbidden spectral range of the PC (where the absorption/emission is very low) into the 

allowed spectral range where there the PC has a large absorption [8]. In one the first studies 

of three dimensional tungsten PCs [9] with near-optical periods, it was suggested that thermal 

emission of infrared photons would be suppressed and recycled into the optical region. Much 

of such previous experiments [9,10,11] and analyses are based on thermal emission in near-

normal directions which is easy to measure. However to examine this energy conversion 

hypothesis it is necessary to determine the emission of the PC into all solid angles - a feature 

that has not been addressed much in previous work. We perform detailed calculations of the 

absorption A(λ,θ,φ) and emission M( λ,T,θ,φ) of metallic and metallodielectric PCs for off-

normal angles. We compare the simulation results with measurements of the 

metallodielectric PC.  

 

Figure 2.1 Scanning electron microscope images of the metallic PC with triangular lattice. 

y 

z x 
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To study the thermal emission from PCs we utilize a recent metallic PC [Fig 2.1] 

developed at Iowa State [10] and a metallodielectric PC developed at ICX-Photonics [2,4]. 

However the results are generally applicable for two dimensional PCs. 

Calculation 

Simulations were performed with the well-established rigorous scattering matrix 

method, in which Maxwell’s equations are solved for both polarizations in Fourier space and 

the electric/magnetic fields are expanded in Bloch waves for a periodic PC structure. In the 

scattering matrix method, the PC with periodicity along x and y directions, is divided into 

slices along z. The transfer matrix of each layer is diagonalized to obtain the eigen-modes 

and eigen-frequencies in each layer, thereby leading to a scattering matrix of the individual 

layer [12]. Through standard recursion relations, scattering matrices of each layer are 

combined to obtain the scattering matrix for the entire PC structure, from which we simulate 

the reflection and transmission, and obtain the absorption for each wavelength [4,13]. By 

varying the incident angle (θ,φ) we obtain the angle-dependent absorption profile A(λ,θ,φ) 

through computationally intensive simulations. Upto 535 plane waves or a matrix size of 

1070 was utilized for achieving convergence in the scattering matrix calculations. The 

computational algorithm can be easily parallelized since each the solution of Maxwell’s 

equations for each frequency is independent and can be simulated on a separate processor. 

The simulations were performed on a cluster that has 84 Pentium 4 (3.06 GHz) CPUs at Iowa 

State University. The simulation requires large memory (~1 GBytes) and long computation 

time (~1.4 hours/frequency/processor) for each run. We verified that the simulation results 

converge well with 535 plane waves. 
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To obtain absorption A(λ,θ,φ), we simulate the reflection and transmission of the PC 

for incident angles θ =0-70° and azimuthal angle φ=0° and 30° for both s and p polarization. 

Both specular and non-specular reflection (Rns) and transmission (Tns) are simulated. The 

transmission is practically zero because the metal substrate is thick (>10μm). From 

Kirchhoff’s Law A(λ,θ,φ)+Rns(λ,θ,φ)+Tns(λ,θ,φ)=1, we determine the absorption 

A(λ,θ,φ)=1-Rns(λ,θ,φ) – Tns(λ,θ,φ). For the PCs, A(λ,θ) is obtained by averaging A(λ,θ,φ) 

over s, p polarizations and φ=0°, 30° as will be discussed later. Due to the lattice symmetry 

rotations through azimuthal angles of 60° are equivalent. 

According to the Kirchhoff’s law, the thermal exitance M(λ,T,θ) is the black body 

exitance MBB(λ,T) modified by the absorption profile A(λ,θ), and can be applied to lossy 

photonic crystals [14]: 

M(λ,T,θ)=A(λ,θ)·MBB(λ,T).     (2.1) 

MBB(λ,T) is the well-known Planck black body exitance, 

[ ]1
2),( /5

2

−
= kThcBB e

hcTM λλ
πλ     (2.2) 

λ ,Τ  represent wavelength and temperature, k is the Stefan-Boltzmann constant, h is 

Planck’s constant, and c is the speed of light. 

Simulation and Results 

We simulate a simple metallic platinum PC absorber consisting of a triangular lattice 

of holes with radius R, depth d1 and lattice period a, in a metallic platinum film. Fabrication 
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of this metallic 2-d PC is substantially easier than the three dimensional woodpile PC [9] and 

metallo-dielectric PC [4] since only a single layer of periodic structure is needed in this 

metallic PC. We discuss later the performance trade-offs with our simpler 2-d PC. Platinum 

is used due to its high melting point (~2045K) and since it is has been employed in high 

temperature emitting photonic crystal structures [4]. As in previous work [4], the frequency 

dependent dielectric response of Pt was modeled by the Drude model which is fitted to the 

measured dielectric functions of bulk Pt (with νp=1245 THz and νt=16.74 THz), which is a 

very good representation at infrared wavelengths.  
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Figure 2.2 Real components of the dielectric function for Pt, Au and Ag in the infrared 

wavelength range. 

The hole radius R is small (R/a=0.25) so that the cut-off wavelength for the 

fundamental TE(11) propagating mode in a circular waveguide (λc=3.42·R) is less than a. 
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Therefore no classical waveguide modes can transmit through the sub-wavelength holes for 

incident wavelengths λ near a. The depth of the corrugated metal layer (d1) is typically larger 

than a/2. Calculations are shown for a=4 μm, corresponding to wavelengths in the mid 

infrared band (3 - 6 μm), but results can be scaled to other lattice spacings and wavelengths. 

The scaling is reasonable as long as real component of the metal dielectric function in PC is 

negative and large in magnitude, typically in the mid infrared wavelength range [Fig 2.2].  

However the scaling breaks down in the optical wavelength range when the real 

component of the metal dielectric function approaches zero. The real components of 

dielectric functions for Pt, Au and Ag behave similarly in the mid infrared wavelength [Fig 

2.2], although Re(ε) is more negative for Au/Ag than for Pt. Thus the simulated absorption 

shows a somewhat broader peak for Pt than for Au and Ag [Fig 2.3(a)], since Au/Ag is more 

similar to an ideal metal than Pt. In experiment, metal is coated conformally on the silicon 

PC [10]. As long as the thickness of the coated metal is larger than its skin depth (e.g. ~25 

nm for Au/Pt at IR wavelength) the structure will behave as a bulk metal with triangular hole 

lattice. Therefore we use bulk metal values in the Drude model. We focus on Pt for the 

remainder of the paper. 

There is a strong absorption peak at 3.7 μm for normally incident light [Fig 2.3(a)]. 

As found experimentally the absorption strength is optimized for deep holes with depth 

d1>a/2 so that evanescent modes decay within the holes, providing strong absorption at the 

resonant wavelength [4]. The depth d1 controls the width of the peak in absorption profile 

[Fig 2.3(b)]. Shallower holes generate very narrow absorption peaks, which broaden and 
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become stronger as the depth approaches 2 μm (d1~a/2) [Fig 2.3b]. When the incident angle 

is increased to 30° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 (a)Absorption as a function of wavelength for a Pt metallic PC with triangular 

lattice symmetry. The incident radiation is in the normal direction. Shown for 

comparison is a simulation for an Au metallic PC with the same parameters as Pt 

metallic PC. (b) Absorption of the Pt metallic PC with different depths of holes. 

(c) The incident radiation is at 30º to the normal, the azimuthal angle is 0°. (d) 

The incident radiation is at 30º to the normal, the azimuthal angle is 30°. 

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

Normal Incidence

P Polarization, Au
S Polarization, Au
P Polarization, Pt
S Polarization, Pt

A
bs

or
pt

io
n

 λ(μm)  

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

P Polarization
S Polarization

A
bs

or
pt

io
n 

 λ(μm)

Incident angle θ=30 o, φ=0o

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

P Polarization
S Polarization

A
bs

or
pt

io
n

 λ(μm)

Incident angle θ=30o, φ=30o

 

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

d1=0.2 μm
d1=0.5 μm
d1=1.0 μm
d1=2.0 μm

A
bs

or
pt

io
n

 λ (μm)  

(d) (c) 

(b) (a) 



www.manaraa.com

 21

[Fig 2.3 (c) (d)], the s and p polarizations are no longer degenerate. When the azimuthal 

angle φ=0°, the absorption splits into a longer wavelength peak (4.9 μm) for both 

polarization, and a shorter wavelength peak (3 μm) for p-polarization. Both absorption peaks 

are weaker than at normal incidence. When the azimuthal angle φ=30°, the absorption 

produces a longer wavelength peak (5.3 μm) for p-polarization. But there are weak 

absorption peaks staying near 4 μm for both polarizations [Fig 2.3(d)]. The azimuthal angles 

of 0° and 30° are adequate to represent intermediate values between 0° and 30°. For example, 

the position of the main absorption peaks changes by less than 16 percent (4%) when the 

azimuthal angle increases from 0° to 30° for both s-polarization (p-polarization),  when the 

incident angle θ=30° [Fig 2.4].  
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Figure 2.4 Position of main absorption peaks in metallic PC (Pt) with respect to the azimuthal 

angle for both polarizations when the incident angle is 30°. 
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Thus using 0° and 30° is a reasonable first approximation to reducing the computational load. 

We collected together absorption calculations at all incident angles θ =0-70° in a two  

 

 

 

 

 

 

 

 

 

 

Figure 2.5 (a) Spectral absorption as a function of wavelength for different angles of 

incidence for the metallic PC with triangular lattice symmetry. The shading 

corresponds to the magnitude of absorption. The spectral absorption is averaged 

over s, p polarization and φ=0°, 30°. (b) Spectral exitance for different angles of 

incidence for the metallic PC with triangular lattice symmetry. The temperature 

is 590K. The shading corresponds to the magnitude of exitance. (c) Normal 

exitance of both metallic and metallodielectric PC compared to that of black 

body at 590K. (d) Integrated exitance over the emission angles (0-70°) of the 

metallic PC at 590K versus the black body exitance at the same temperature. 
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The exitance of a grey body at 590K with average emissivity of metallic PC is 

also calculated.  

dimensional plot [Fig 2.5 (a)]. As the angle (θ) shifts away from normal, the absorption peak 

splits and shift to both shorter and longer wavelengths from the wavelength of the normal 

incidence absorption peak. The weak absorption peaks staying near 4 μm as the incident 

angle varies from 0° to 70°, causes a weak bifurcation in the two dimensional plot, and are 

from the absorption for azimuthal angle of 30°. We expect that more accurate sampling of 

azimuthal angles (φ) will smoothen the area between the bifurcation. 

The simulated absorption [Fig 2.5 (a)] and spectral exitance at the temperature of 

590K [Fig 2.5 (b)] shows most interestingly that the PC emits at both longer and shorter 

wavelengths as the emission angle is varied away from the normal direction. A significant 

exitance peak remains around 4μm at different angles of emission [Fig 2.5 (b)]. Due to the 

blackbody spectral exitance at 590 K having a maximum at 4.9 μm and reduced intensity at 

shorter wavelengths, the PC exitance at the shorter wavelength (λ<4 μm) is strongly reduced.  

In the normal direction the PC has a simulated exitance [Fig 2.5 (c)] strongly peaked 

at ~3.7 μm with a narrow half-width of ~0.35 μm, The simulated spectral exitance in the 

normal direction is remarkably strong and almost reaches the black body curve. The strong 

normal direction exitance suggests that photons are suppressed in the long wavelength 

regime and enhanced in the allowed band for the small angles. 

The spectral absorption Aavg(λ) of the PC is obtained by integrating A(λ,θ) over the 

hemisphere from θ=0° to 70° at 10° intervals, 
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The first term in the numerator represents the area of the hemispherical cap (around the 

normal direction) multiplied by the absorption. The integration was done in 10° increments; 

hence the first term is integration from -5° to +5°. For off-normal directions the integrated 

exitance [Fig 2.5 (d)] was calculated by combining (1) and (3). The hemispherical exitance 

[Fig 2.5 (d)] is much weaker than the black-body curve since the PC emits a range of 

wavelengths. The PC redistributes the emission at different wavelengths into different 

emission angles.  

We obtained the average emissivity of the PC (e) by averaging Aavg(λ) over all the 

calculated wavelengths e= <Aavg(λ)> to obtain e~0.17. We then compare [Fig 2.5 (d)] the 

hemispherical exitance of the PC with a grey body have the same emissivity (e~0.17) as the 

PC.  

The intensity and width of the absorption can be increased by enlarging the size of the 

holes to R/a=0.35 [Fig 2.6]. The absorption resonance has broader maxima around 4 μm, and 

exhibits a similar variation with angle. The cut-off wavelength λc (3.42R) of the waveguide 

mode in large hole (R/a=0.35) is greater than the lattice constant (a=4μm) thus the lattice 

array is not a sub-wavelength structure anymore. There is a propagating waveguide mode 

inside the cylindrical cavities at λ~4.79 μm in addition to the surface plasmon mode at 4 μm 
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that causes broad absorption. PCs with broad absorption peak are promising candidates for 

broad band mid infrared (3 - 6 μm) applications. 
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Figure 2.6 Absorption of the metallic PC with holes radius of R=0.25a and R=0.35a. 

We perform similar simulations for the metallodielectric PC that has been studied 

previously [4]. Here a sub-wavelength array of holes in a thin Pt layer of thickness d1~0.1μm 

is on top of a silicon photonic crystal of the same period with thickness of d3~8μm, thereby 

forming PCs in both the metal and silicon substrate. A thin layer of SiO2 of thickness d2 is 

formed between the metal and Si to prevent inter-diffusion. The silicon PC resides on an n-

doped bulk Si substrate [4]. The electric fields can penetrate into the Si PC and substrate, a 

significant difference from the metallic PC.  

Scattering matrix simulations of the absorption of the metallodielectric PC [Fig 2.7] 

exhibit a very strong absorption peak (reaching 0.9) at a wavelength near the lattice constant 
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(a) at normal incidence. There are sub-peaks in the absorption related to the plasmon modes 

at the metal-Si interface. The silicon photonic crystal in the metallodielectric PC behaves as a 

two-layer material with a smaller effective refractive index in the upper layer (d3) on top of 

the much thicker silicon substrate. Multiple reflection peaks occur due to multiple reflections 

within the layered structure leading to absorption sub-peaks and an overall broader 

absorption peak in the metallodielectric PC, than the metallic PC [Fig 2.7]. 
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Figure 2.7 Absorption as a function of wavelength, for both 2d metallodielectric and 2d 

metallic PC, with triangular lattice symmetry. The incident radiation is in the 

normal direction.  

At off-normal angles the absorption peak splits and shifts to both longer and shorter 

wavelengths [Fig 2.8 (a)]. There is a significant absorption peak remaining at λ~a (a=4μm) 

when the angle of incidence is varied from 0 to 70°. The angular absorption of the 
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metallodielectric PC is similar to that of metallic PC [Fig 2.5 (a)], except that the absorption 

peak remaining at λ~a (a=4μm) is considerably stronger.  

The hemispherical simulated spectral exitance (at T=590K), [Fig 2.8 (b)] displays 

peaks near 4 μm and a weaker peak near 5 μm. By averaging the integrated exitance over all 

the wavelengths we obtain an emissivity e=0.22 for the metallo-dielectric PC.  Similar to the 

metallic PC, the normal spectral exitance of the metallodielectric PC involves a narrow 

wavelength band near the peak of the absorption profile [Fig 2.7].  

 

 

 

 

 

 

 

 

Figure 2.8 (a) Spectral absorption as a function of wavelength for different angles of 

incidence for the metallodielectric PC with triangular lattice symmetry. The 

shading corresponds to the magnitude of absorption. The spectral absorption is 

averaged over s, p polarization and φ=0°, 30°. The experiment results are 

included. (b) Integrated exitance of the metallodielectric PC at 590K over the 

incidence angle (0-70°) versus the exitance of the black body at the same 

temperature. The exitance of a grey body at 590K with average emissivity of 

metallodielectric PC is calculated. 

When compared with a grey body [Fig 2.5 (d)], the metallic PC exhibits some 

decrease in exitance in the long wavelength regime accompanied by an increase in exitance 
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at wavelengths near the absorption resonance (λ ~4 μm) and even at shorter wavelengths 

(λ <4 μm). Alternatively the metallodielectric PC shows some decrease in long wavelength 

exitance in conjunction with an increase in exitance in the high absorption band (λ~4 μm) 

[Fig 2.8 (b)]. Both metallic and metallodielectric PC do exhibit photon redistribution. 

However there is still significant emission into all wavelengths.  

The physics underlying thermal emission is that inside the PC the lattice vibrations (at 

a temperature T) are in thermal equilibrium with the photon states that are described by the 

density of photon states inside the PC. In addition photons can be transported from the bulk 

to the PC surface with a frequency dependent group velocity. The photon DOS and the group 

velocity both describe the microscopic thermal emission process [15]. Photons are emitted 

and absorbed from the surface of the PC consistent with thermal balance. There is diffraction 

at the surface of the PC, where photons emitted with wave-vector k will couple to Fourier 

components of the electric field at the surface (with components G) since the surface is 

periodic, and result in emission with wave-vectors k+G. Here G is a reciprocal lattice vector 

of the PC. This redistributes the radiation intensity from the spectrum inside the PC into one 

with strong angular dependence outside the PC. Effectively, the PC channels photons of 

specific wavelengths into well defined angular bands. To obtain more useful exitance in the 

band of interest, one may enhance the surface waves by manipulating the surface structure. A 

promising approach is to use a patterned metal surface with circular concentric grooves 

surrounding a single aperture, which has been demonstrated to have emittance and beaming 

with small angular divergence [16]. An alternative strategy is to retain a periodic structure 
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but create defects (protrusions) neighboring to the holes and thereby modifying the surface 

wave behavior in the structure.  

Discussion and Surface plasmon model 

The principal features of the angle-dependent absorption and exitance can be 

understood from a simple surface plasmon model [17]. Theoretical analysis has established 

that sub-wavelength hole arrays exhibiting extraordinary transmission [18, 19] support a 

surface mode that has high electric field in the air half-space and in the holes [20]. This 

surface mode has dispersion similar to the surface plasmon mode at metal-dielectric 

interfaces. Hence an analysis with a simple surface plasmon model can yield valuable 

insight.  

For a triangular lattice (of lattice constant a), the reciprocal lattice vectors are, 

1 2
2 1 2 2(1, ); (0, )

3 3
G G

a a
π π

= − =      (2.4) 

Surface plasmons at a metal dielectric interface films are longitudinal modes propagating 

along the surface with exponentially decaying amplitude away from the interface, and have a 

dispersion relation,  

2
1

21

21 ][
εε

εεω
+

=
c

ksp       (2.5) 

ε2 is the real part of the metal dielectric function that is negative, and large in magnitude, for 

IR frequencies. ε1 describes the dielectric media. Since the surface plasmon dispersion lies 
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below the incoming light line for any angle of incidence (θ), incoming light cannot directly 

generate surface plasmons on a smooth surface. 

When an incident light of angular frequency ω, impinges on the patterned surface at 

an angle θ, it can couple to a surface plasmon at the air/metal interface through a reciprocal 

lattice vector, 

spc
kGi =+θω sin       (2.6) 

By combining the dispersion relation (5) with this momentum conservation condition 

(6), we get the eigen-value equation for the surface plasmon frequencies,  

20020
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εε vjvii ±+±=
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Where v0=c/a. The fundamental surface plasmon mode (i=1,j=0 or i=0,j=1) is 

predicted to occur at a wavelength of  (√3/2)a. As the angle θ varies away from the normal, 

this model predicts an increase of the wavelength of the absorption maximum coupled with 

the appearance of modes at shorter wavelength [Fig 2.8 (a) and Fig 2.5 (a)]. The primary 

calculation results could be described by the surface plasmon model. There is good 

agreement in the increase in the wavelength of the longer wavelength mode between the SP 

model and scattering matrix simulation. In the two dimensional PC in this paper, the 

absorption maximum are strongly dependent on the incident angles and caused by the surface 

plasmon-like mode in the PC as discussed in the surface plasmon model.  
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This surface mode decays evanescently in the interior of the holes. The resonant 

surface mode wavelength exceeds the cutoff (3.42R) for a circular aperture. All waveguide 

modes within the aperture are evanescent. The decaying propagation constant of the 

waveguide mode is 

 
2 21 22 nr

d

k
l R

πγ
λ

⎛ ⎞ ⎛ ⎞= = − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

     (2.8) 

where knr is the rth zero of the nth Bessel function. The TE11 mode (k11=1.84) has the largest 

decay length ld. The predicted value of ld/a is 0.15 from (8) at the resonant wavelength. The 

hole depth d1 >> ld, since d1/a~0.5. Hence evanescent modes inside the aperture are 

effectively absorbed. The resonant mode inside the holes has large oscillating fields inside 

the cylinder surface that induce large oscillating currents on the cylinder surface and 

dissipate energy from the incident wave.  

The mechanism of absorption in the 3-d woodpile photonic crystal is somewhat 

different. The absorption is caused by a propagating Bloch mode that transmits through the 

different layers of the woodpile structure [21]. This Bloch mode is a waveguide-like mode 

that couples through different layers of the metallic PC [21]. Since the absorption is caused 

by a propagating Bloch mode at a resonant wavelength, the absorption maximum is 

insensitive to the incident angle. In the woodpile structure also, the oscillating fields of the 

resonant mode inside the structure cause oscillating currents induced on the surface of the 

metallic PC. The oscillating currents on the surfaces of the metallic structure cause 

dissipation and remove energy from the incident wave. The absorption and oscillating 
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currents occur in the near surface region of the 2-d PC and through the entire thickness of the 

woodpile structure.  

In comparison we find that the absorption maxima in the 2-d PC does shift with 

incident angle more significantly than in the 3-d woodpile structure. However the the band 

edge where the absorption drops from the long-wavelength limit does shift to longer 

wavelengths, with increasing angle of incidence [9] for the 3-d woodpile structure, somewhat 

similar to the behavior of this 2-d PC. TPV devices from both 2-d and 3-d structures need to 

consider these trade-offs of angular behavior with the complexity of the structure. 

The shifts of the exitance peaks with angle were measured for the metallo-dielectric 

PC with a Fourier transform infrared spectrometer (FTIR) fitted with an external emission 

port. The positions of the measured exitance peaks are compared with the simulations and SP 

model predictions [Fig 2.8 (a)]. There is good agreement between the prediction of surface 

plasmon modes ((0,-1), (1,0), (1,1)) by the SP model and the measurement of surface 

plasmon modes at incidence angles from 0 to 40°.  

We investigate the field distribution in the metallic PC within the hole [Fig 2.9(a)] 

and at the surface [Fig 2.9 (b), (c)] at the wavelength of the absorption peak. The decay 

length of the field  
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Figure 2.9 (a) Field distribution in x-z plane of the metallic PC (a=3.74μm) with normal 

incidence shown for two neighboring holes. The resonance wavelength is 

3.55μm. Also shown in (b) (c) (d) are three-dimensional views of the field 

distribution just below the surface of one hole. (b) The incidence is in the normal 

direction. The wavelength is 3.65μm. (c) The incident angle is 30° and the 

azimuthal angle is 0°. The wavelength is at resonance wavelength of 4.9μm. (d) 

The incident angle is 30° and the azimuthal angle is 0°. The wavelength (4.5 μm) 

is at not at resonance.  

is ~0.8μm inside the hole [Fig 2.9 (a)], close to the predicted value (~0.6μm) of the decaying 

waveguide mode from (8). The field intensity is very strongly enhanced by factors exceeding 

100 at the rim of the holes. The high field intensities extend a short distance inside the hole 

(<0.4 μm). In normal incidence at the resonance wavelength of 3.65μm [Fig 2.9 (b)], the 

field intensities at the surface exhibit approximately quadrupolar distribution with intensity 

maxima 30° away from the x-axis, in between the centers of the holes. When the incident 

angle increases to 30° and at the resonance wavelength of 4.9μm [Fig 2.9(c)], the field 

intensity at the surface exhibit approximately dipolar distribution with large enhancement 

(~150) at the rims of the hole that is lower than that at normal. We also investigate the field 

distribution at the surface at off-resonance wavelength (4.5μm) for incident angle of 30° [Fig 

2.9 (d)]. The maximum field intensity is merely ~3% of that at normal so that induced 

charges are weak. There is no well-defined modal distribution. At both incident angles 

(normal and 30°) at the resonance wavelength, the field intensity maximum from the 

scattering matrix simulations are due to the induced charges at the rim of the hole. Such 

induced charges are expected from a surface plasmon like mode - which connects the 

scattering matrix simulation to the surface plasmon model- and describes the angular 
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dependence of the absorption peaks in the surface plasmon model [Fig 2.5 (a)]. The 

appearance of strong induced charges at the hole rims provide indirect support for the surface 

plasmon model. 

In the metallodielectric PC, when the incidence angle increases from 0° to 70°[Fig 2.8 

(a)], the first absorption peak stays near λ~a (a=4.0 μm). At θ=0°, the second absorption 

peak starts  

 

 

 

 

 

 

 

Figure 2.10 Field distribution in the 
x-y plane just below surface of one 
hole in the metallodielectric PC 
(a=4.2μm) with normal incidence. 
(a) The wavelength is 3.90μm. (b) 
The wavelength is 4.25μm. 
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from 3.7 μm, and shifts to longer wavelength. To understand the different behavior of the 

two absorption peaks, we simulate the field distribution at the surface of the metallo-

dielectric PCs and find different mode symmetries. Fig. 2.10 (a) shows the field distribution 

at the wavelength of 3.7 μm. The field is concentrated at the rim of the hole with field 

maxima [Fig 2.10(a)] in a quadrupolar distribution at the rim of the hole. Similar distribution 

is found in the metallic PC. The field maxima are oriented along the first shell of G vectors 

and can couple to incident waves at different angles of incidence. Fig 2.10 (b) shows the field 

distribution for the mode near λ~a. The field concentrates at the rim of the hole. However, 

the maxima of field form a dipolar distribution at the rim of the hole. The dipolar mode does 

not change wavelength when the angle is changed. 

Conclusions 

We have investigated the angular spectral absorption characteristics of both the 

metallic PC and metallodielectric PC. By convolution of the black body exitance with the 

absorption profile of the PC, thermal exitance of the heated PC is obtained. The PC 

redistributes the thermal emission at different wavelengths into different emission angles. 

The thermal exitance of PC over all the angles is similar to a grey body with the integrated 

emissivity of PC. We observe redistribution of photons from outside of the allowed spectral 

region into the allowed spectral region. We also investigate the surface plasmon models to 

find the absorption peak wavelength of the PC. There is good agreement between surface 

plasmon model and simulated absorption using scattering matrix method. 
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CHAPTER 3 PHOTONIC CRYSTAL BASED TUNGSTEN 
FILAMENT FOR HIGH INTENSITY LIGHT BULBS 

 

Introduction 

It is widely acknowledged that the efficiency of light bulbs with tungsten filaments is 

very low since a large portion (>90%) of the energy is radiated as heat. Using recent 

advances in photonic crystals and sub-wavelength hole arrays we show that it is possible to 

considerably increase the lifetime and the brightness of such incandescent filaments. 

Sub-wavelength arrays of holes in thin metal sheets exhibit the extraordinary 

transmission phenomenon when the wavelength of incoming light is close to the lattice 

spacing [1-12]. In parallel with this phenomenon there has been a very active study of how 

metallic and metallo-dielectric photonic crystals enhance and modify the thermal radiation 

spectrum. We have previously designed a metallo-dielectric photonic crystal where a sub-

wavelength array of holes in a thin metal sheet resides on a semiconducting photonic crystal. 

This converts the extraordinary transmission into a sharp absorption within the weakly 

absorbing photonic crystal. When heated this structure exhibits a narrow thermal emission at 

infrared wavelengths.  

We propose a new all-metallic photonic crystal structure with a remarkable 

absorption at a tunable wavelength controlled by the lattice spacing (a), and a consequently 

high intensity of emission band. The structure consists of a triangular lattice of cylindrical 

pits of radius R and depth d1 etched into a tungsten film. There is a uniform tungsten 
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substrate of thickness d4 below the triangular lattice of holes, so that the tungsten structure’s 

thickness is d1+d4 [Fig. 1]. Since tungsten is absorbing the precise value of d4 is not critical 

for the design as long as d4 is several wavelengths thick.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 (a) Schematic of metallic photonic crystal structure, with the thicknesses of the 

photonic crystal is d1 and substrate. The pitch size of the holes array is a. The 

radius of the hole is R. The structure is composed of tungsten. (b) SEM image of 

a 2-d triangular lattice of holes. (c) Experimentally measured real and imaginary 

parts of the dielectric function of tungsten as a function of the wavelength. 
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Simulation and Results 

The reflection (R) and transmission (T) from this array was calculated with the well-

established scattering matrix method, where Maxwell’s equations were solved in a plane 

wave basis for each frequency at a time. Diagonalization of the transfer matrix within each 

layer provides the eigenmodes and propagation wavevectors and the scattering matrices 

within each layer. By demanding continuity of the fields at each interface and using standard 

recursion relations the scattering matrix of the entire structure was determined. With the 

initial conditions of waves incident from the left, the reflection and transmission for each 

frequency and incident angle was found from which the absorption A = 1−Rns−Tns was 

computed, where Rns and Tns are the nonspecular reflection and transmission respectively. 

The simulations are performed with the frequency-dependent dielectric functions of tungsten 

(ε1(ω), ε2(ω)) inferred from low temperature tungsten films [4], which exhibit considerable 

absorption at optical wavelengths. This one-layer patterned tungsten films is considerably 

simpler to fabricate and offers higher performance than the more complex layer-by-layer 

structure that requires 4 patterned layers to complete one unit cell. 

We first simulate the lattice spacing at normal direction in the optical range (a=0.6μ) 

for medium size holes (R/a=0.35). A narrow reflection dip is observed for small depths d1 of 

0.1μ. By increasing d1 to 0.2μ, the simulated non-specular reflectance [Fig 3.2(a)] produces a 

major reflection dip at λ~0.6μ that reaches zero. Rns decreases continuously from the long 

wavelength value (~0.95) to this minimum at 0.6μ before increasing again at shorter 

wavelengths. The dip is not as sharp as found in sub-wavelength arrays of holes since 

tungsten has the real component of the dielectric function positive between 0.2-0.95μ [Fig 
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3.1(c)], quite different from a typical metal. The kink at 1.5μ is due to the kink of the ε1 of W 

at this wavelength, that arises from the electronic band structure of W. Since the transmission 

T is very small through the thick tungsten structure (<10-4), the absorption A~1-Rns shows a 

pronounced peak at λ~a (0.6μ) reaching a value of 1 [Fig. 2(b)]. 

 

 

 

 

 

 

 

 

 

Figure 3.2 Calculated normal non-specular reflectance (a) and absorption (b) of a triangular 

lattice of holes with lattice constant a=0.6 μm, radius r=0.21µm, r/a=0.35 and 

substrate thickness d4=10 µm, as a function of the photonic crystal thickness (d1) 

that varies from 0.1 µm to 0.5 µm. The reflectance and absorption of a smooth 

tungsten film is shown for comparison. 

We also calculated the Rns expected for a smooth tungsten film with these frequency 

dependent dielectric functions [Fig 3.2(a)]. For smooth W, at optical wavelength range, the 

Rns ~ 0.45-0.55 implies an absorbance A~ 0.55-0.45. The periodically textured W film has an 

absorbance that is consistently higher than the uniform W film at all wavelengths larger than 

0.25μ, and more than 20% larger at the all-important optical wavelengths. 
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Further, we calculated the absorption of a triangular lattice of holes on a tungsten 

substrate [Fig 3.3], as a function of incident angle θ in s- and p-polarizations with the 

configuration (a=0.6 μm, R/a=0.35, d1=0.2 μm, d4=10 μm) that optimizes the absorption of 

triangular lattice. We observed that at normal incidence, the same absorption peak (~1.0) 

exists in both polarizations at the wavelength corresponding to the lattice spacing a. At off-

normal directions, the photonic crystal redistributes its absorption at different wavelengths 

for different incidence angle θ.  

 

 

 

 

 

 

 

 

Figure 3.3 Calculated two-dimensional graph of the absorption of the tungsten photonic 

crystal in s- and p-polarizations as a function of the wavelength and incident 

angle θ. The PC thickness d1 is 0.2 µm. Other parameters are kept same as the 

photonic crystal in Figure. 2. 

In both polarizations, the absorption peak shifts away from the original wavelength 

that is the same as lattice spacing a at normal incidence when θ increases. In p-polarization, 

two absorption peaks develop for off-normal incidence [Fig 3.3 (b)]. The long-wavelength 

absorption peak moves continuously to longer wavelength with A~1.0 for θ<60°. The shorter 

wavelength peak increases its strength at large angles (θ>60°), moving continuously to 

0

10

20

30

40

50

60

70

80
0 0.5 1 1.5 2 2.5 3 3.5

 

λ (μm)

Absorption of Photonic Crystal in p-polarization

 

In
ci

de
nt

 A
ng

le
 T

he
ta

 (D
eg

re
e)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

0

10

20

30

40

50

60

70

80
0 0.5 1 1.5 2 2.5 3 3.5

 

λ (μm)

Absorption of Photonic Crystal in s-polarization

 

In
ci

de
nt

 A
ng

le
 T

he
ta

 (D
eg

re
e)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 



www.manaraa.com

 45

shorter wavelengths. The absorption in p-polarization is much larger than in s-polarization 

for large incidence angles. The absorption of the photonic crystal approaches the broader 

black-body curve when all emission angles are considered.  

 

 

 

 

 

Figure 3.4 Calculated two-dimensional graph of absorption of a smooth tungsten film in s- 

and p-polarizations as a function of the wavelength and incident angle θ.  
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structure has much larger absorption at optical wavelengths than the smooth tungsten film, 

especially for near-normal incident angle θ. 

Since bulk tungsten has a high melting point (3695 K) and significant absorption 

(~0.5) at optical wavelengths, it is used extensively as an incandescent light source. Hence 

we next compare the performance of photonic crystal with that of smooth tungsten film. We 

calculated the absorption A(θ,λ) of the tungsten PC and the smooth W film by averaging the 

calculated absorption (A(φ,θ,λ)) over s, p polarizations and φ=0°, 30°. Due to the lattice 

symmetry rotations through azimuthal angles of 60° are equivalent. The hemispherical 

spectral absorption A(λ) of the PC and smooth W film [Fig 3.5(a)] is obtained by integrating 

A(λ,θ) over the hemisphere from θ=0° to 80° at 10° increments [13], 
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The first term in the numerator represents the area of the hemispherical cap (around the 

normal direction) multiplied by the absorption. Hence the first term is integration from -5° to 

+5°. 

The result [Fig 3.5(a)] demonstrates that the average absorption of the photonic 

crystal is about 20% larger than a smooth tungsten film at optical wavelengths and somewhat 

large for infrared wavelengths as well. According to Kirchhoff’s law, the exitance is the 

product of the wavelength-dependent absorption and the Planck black-body exitance. 

Therefore, the exitance of both the photonic crystal and smooth W film could be obtained 
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through the product of wavelength-dependent absorption and black body spectral irradiance 

at specific temperature. At 2660K, typical of the temperature of an incandescent source, the 

thermal exitance of both photonic crystal and smooth tungsten film [Fig 3.5(b)] peaks at 0.9 

μm while the thermal spectral irradiance of photonic crystal is about 25 percent larger than 

that of smooth tungsten between 0.9 and 1.4μm. The thermal exitance of photonic crystal at 

optical wavelengths is also greatly larger than a smooth tungsten film.  

 

 

 

 

 

 

Figure 3.5 (a) Calculated average absorption of photonic crystal compared to that of smooth 

tungsten film. The calculated absorption is averaged over the incident angle θ 

from 0º to 90º, angle φ with 0° and 30°, and over both p- and s-polarizations. The 

parameters are kept the same as the photonic crystal in Figure. 2 (b) The 

simulated thermal emission density of both photonic crystal and smooth tungsten 

when the temperature is at 2662K. The thermal emission density is the product of 

absorption and blackbody emission density. 

To further compare the thermal effect of the PC and smooth W, we consider typical 

conditions for a 100W incandescent light bulb which has a coiled tungsten filament length of 

L=0.58 m, and radius of r=0.0032 cm [14] equivalent to a smooth W film surface area of 
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S=1.17×10-4m2 at room temperature. We assume that both heat conduction loss and thermal 

expansion effect of PC and W film can be neglected. According to energy conservation, the 

total power emitted over the wavelength range of 0.2μm to 3.3μm from the filament surface 

should equal to the input electrical power at energy balance,  

)(/)],()([ 2
3.3

2.0

TRVTMAS BB

um

um

=⋅⋅⋅Δ ∑
=

λλλ
λ

λ＝

   (3.2) 

Δλ is the wavelength interval (0.05μm) used in simulation, MBB(λ,T) is exitance of black body 

at temperature T, V is the root mean square (RMS) of the ac supply voltage (120V), R(T) is 

the temperature dependent resistance of the W filament in a 100W light bulb. 

The resistance R(T) is simply, 

2
)()(

r
LTTR

π
ρ

=       (3.3) 

In which ρ(T) is the measured temperature-dependent resistivity of the W filament [16]. ρ(T) 

is approximately increases linearly with temperature, similar to common metals  

The operating temperatures are obtained by solving (3.2) graphically [Fig 3.6] and 

setting the total emitted power to equal the input electrical power. From energy balance, the 

operating temperature of the PC is ~2590K, compared to 2750K for the smooth W. At 2750K, 

the smooth W emits ~98W. The PC operates at a considerably low temperature (~160K 

lower) and emits ~105W, ~7% higher than the smooth W. Between the operating temperature 

of PC (~2590K) and smooth W (~2750), we choose 2660K as the typical of incandescent 

filaments through calculation. 
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Figure 3.6 To solve graphically operating temperature of W filament where the input 

electrical power equals the total emitted power.  

Vaporization of W from filament surface at extremely high temperature leads to the 

thinning of the filament, where the brittle facture might happen and results in the filament 

failure. The oxidation of W filament by trivial amount of air slowly leaking into the light 

bulb also contributes to the failure of the W filament. Both the vaporization and oxidation 

processes strongly depend on the operating temperature of the filament. The lower operating 

temperature of W filament could slow down the vaporization and oxidation processes, thus 

increasing the lifetime of the filament.  

We next calculated the output light intensity (I, in lumens) of both photonic crystal 

and smooth tungsten film at 2660K using the relation 
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In which A(λ) is the integrated absorption spectrum over the angle of 0 to 80°, e(λ) is the 

blackbody exitance. Therefore, the product of A(λ) and e(λ) is the integrated exitance at a 

specific temperature. LF(λ) is the standard luminosity function [15,17] representing the 

human visual response.  

Using the typical temperature estimated previously T=2660K, and (3.4), we estimate 

[18] the light output intensity of a tungsten filament to be 1960 lumens [Table 3.1]. This is 

~14% higher than the widely quoted 1640 lumens for a 100 W incandescent light bulb, due 

to the neglect of heat conduction losses in tungsten. The tungsten photonic crystal at the same 

temperature, however, has a much higher output light intensity of 2740 lumens [Table 3.1]. 

Thus the output light intensity I of the photonic crystal is 1.4 times as large as that of smooth 

tungsten film. 

The photonic crystal however does not reduce the fraction of energy emitted outside 

optical wavelengths in the infrared region. The ratio of power emitted at optical wavelengths 

to the total emission is 0.15, same for both structures. 

The origin of the enhanced emittance lies in the extraordinary transmission effect. For 

thin W films (eg. d1=0.1μ) without a substrate, a transmission peak is observed at λ~a. For a 

within the optical range this transmission peak in W is somewhat broader than typically 

found in metals. The extraordinary transmission mode consists of a superposition of 

exponentially decaying eigen-modes within the hole [19]. For thin metal sheets, (d1<<λ) the 

decay is not significant. The enhanced transmission is converted into enhanced absorbance, 

which in turns leads to enhanced thermal emission when the structure is heated.  
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Table 3.1 Simulated output light intensity in the visible wavelength range of 0.4μm to 

0.75μm using the luminosity function, for a smooth tungsten filament at 2660K, 

compared to a photonic crystal based tungsten filament. The area of the filament 

has been taken to be 1.17x10-4 m2, typical of a 100W light bulb filament. The heat 

conduction loss has been neglected.  

Structure Light output (Lumens)  

Smooth Tungsten 1960 

Photonic Crystal 2740 

Emission ratio PC/W 1.40 

 

The proposed geometry can be scaled to different wavelengths of interest, including 

the infrared, where it will produce a tunable enhanced emission. Such uniquely narrow 

infrared emitters can have novel application to sensors where infrared absorbance of trace 

gases can be measured with higher sensitivity. Also, thermo-photovoltaic devices can heat up 

and recycle photons resulting in emission of photons in a narrow range that can very 

efficiently capture waste heat and convert solar thermal radiation. 

Discussion and Conclusion 

We demonstrate through the numerical simulation that the tungsten photonic crystal 

can have output light intensity 1.4 times as large as that of the smooth tungsten film under the 

same input power. Moreover the higher output light intensity of the tungsten photonic crystal 

than the smooth tungsten film implies that the tungsten photonic crystal filament may operate 

at lower temperature in order to have the same output light intensity, which would imply 

longer lifetime of the tungsten photonic crystal filament.  
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However there are certain serious experimental limitations of this tungsten photonic 

crystal. At high temperatures, above approximately 1600 ºC the periodic patterned surface 

structure of the tungsten can change severely [19]. The surface pattern in the tungsten 

photonic crystal can deform completely due to grain growth occurring in polycrystalline 

tungsten, roughening the surface and destroying the periodic pattern at the surface. Such 

roughening temperatures are far below the melting temperature of tungsten. The 

enhancement of the thermal emission will then not occur at high temperature. Further work is 

needed to explore potential ways to prevent the deformation of the tungsten photonic crystal 

at the high temperature necessary for incandescent emission. 

References 

1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Nature (London) 391, 

667–669 (1998). 

2. R. Biswas, C.G. Ding , I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. 

Johnson, Phys. Rev. B. 74, 045107 (2006). 

3. David L. C. Chan, Marin Soljaˇci´c and J. D. Joannopoulos, Optics Express Vol. 14, 

8785 (2006). 

4. CRC Handbook of chemistry and physics (2006). Page E-381. 

5. I. Celanovic, D. Perreault, J. Kassakian, Phys. Rev. B.72, 075127 (2005) 

6. I. Celanovic, F. O'Sullivan, M. Ilak, J. Kassakian, and D. Perreault, Opt. Lett. 29, 863-

865 (2004) 

7. Z. Y. Li and L. L. Lin, Phys. Rev. E 67, 046607 (2003). 

8. H. G. Craighead, R. E. Howard and D. M. Tennant, Appl. Phys. Lett. 38, 74 (1981). 



www.manaraa.com

 53

9. H. Sai, H. Yugami, Appl. Phys. Lett., 85, 3399 (2004) 

10. H. Sai, Y. Kanamori, K. Hane, H. Yugami, M. Yamaguchi, Proceedings of the Thirty-

first IEEE Photovoltaic Specialists Conference, 2005. page 762 (2005). Conference 

Record  

11. H. Sai, H. Yugami, Y. Kanamori, J. Micromech. Microeng. 15, 5243 (2005) 

12. H. Sai, Y. Kanamori and H. Yugami, Appl. Phys. Lett., 82, 1685 (2003). 

13. Robert Siegel and John R. Howell, Thermal Radiation Heat Transfer-4th ed. 

(Taylor&Francis, New York, 2002)  

14. Lawrence D. Woolf, Seeing the Light: The Physics and Materials Science of the 

Incandescent Light Bulb, Research Report General Atomics, February 20, 2002. 

15. Stockman, A., & Sharpe, L. T. (2000). Vision Research, 40, 1711-1737. 

16. H. A. Jones, Phys. Rev. 28, 202 (1926) 

17. Sharpe, L. T., Stockman, A., Jagla, W. & Jägle, H.(2005). Journal of Vision, 5, 948-968. 

18. In the numerical simulation, absorption of smooth tungsten is calculated with 0.01μm 

step size, while for photonic crystal, due to computation load, it is obtained through 

interpolation from data with 0.05μm step size. 

19. R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, E. Johnson, J. Opt. Soc. of America B 

24, 2489-95 (2007).  

20. H. Sai, MRS Spring 2009 talk and unpublished. Similar roughening of tungsten surfaces 

has been observed in Ames Laboratory. 

 

 

 



www.manaraa.com

 54

CHAPTER 4 MICROSTRIP PATCHES 

Introduction 

The objective of the simulation is to find out the optimal parameters for the microstrip 

patches to get strong absorption near the 10μm band using the design of a recently published 

paper [1]. Instead of the hole arrays used in previous simulation, we use the arrays of 

microstrip patches [Fig. 1] in the simulation. 

 

 

 

Figure 4.1 The triangular array of circular patches, with diameter D, height d1 and period a, 

sits on a dielectric film of thickness d2, which in turn covers a ground plane. 

In our simulation, both the circular patches and ground plane are metal (Au). The 

dielectric film is Si3N4 with dielectric constant of 4.0. The ground plane (thickness d4) is 

much thicker than the skip depth of Au (~25nm at IR wavelengths). Such thick ground plane 

will lead to nearly zero transmission in the IR range. The period (a) is chosen to be 4.5μm in 

order to obtain primary resonance near 10μm. 

Simulation Results 

The absorption spectrum has a primary broad peak near 10μm and weak peaks at 

lower wavelengths. When d1 and d2 are both 0.1μm, the primary resonance (A~0.55) is at 

10.6μm. The primary resonance is considered to arise from a localized surface plasmon, 
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which in turn is due to a standing wave of plasmons trapped below a metal patch [1]. The 

primary resonance of a circular patch occurs at  

2/1

2

)21(
841.1 dw

cnD

p
d +=

πλ      (4.1) 

nd (2.0) is the refractive index of the dielectric layer, wp (2175 THz) is the plasmon frequency 

of Au in its Drude model. From (1), when d2 is 0.1μm, the primary resonance is at 14.9μm 

and when d2 is 0.2μm, the primary resonance at 11.84μm. There is also a weak sub-peak at 

~9.0μm, which is believed to arise from the surface plasmon at the Au-dielectric interface. 

The wavelength of the sub-peak is consistent with the theory, which is nd×a=9.0μm. 

 

 

 

 

 

 

Figure 4.2. (a) Calculated absorption of the microstrip patch structure (b) Calculated 

nonspecular reflection of the microstrip patch structure. 
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When d2 is increased from 0.1μm to 0.2μm and d1 stays as 0.1μm, the magnitude of 

the primary resonance at 10.6μm increases to ~0.9. The wavelength of the primary resonance 

is shifted slightly to lower wavelength, ~10.2μm. Thus, the primary resonance is dependent 

on the thickness of the dielectric layer d2. There is still a weak sub-peak at ~9.0μm. 

To find the effect of the d1 on the absorption, d2 is kept at 0.2μm and d1 is increased 

from 0.1μm to 0.2μm. The wavelength of the primary resonance peak does not change, but 

the sub-peak at ~9.0 μm becomes sharper and a new sharp sub-peak appears at ~7.6μm. It is 

not clear yet why the new sub-peak at 7.6μm appears. The surface plasmon at the interface of 

Au and dielectric is strongly dependent on the d1. 

 

 

 

 

 

 

 

Figure 4.3. Absorption of microstrip patches for different circular patch diameters. (b) 

Nonspecular reflection of microstrip patches for different circular patch 

diameters 

We next simulate the arrays of microstrip patches with different circular patch 
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the wavelength of the primary resonance will also decrease [Fig. 3]. At the same time, the 

magnitude of the primary resonance also becomes smaller and the primary absorption peak 

becomes narrower when the diameter of the circular patches decreases. 

We also notice that there is a sharp peak near 4μm in the absorption spectrum [Fig. 

4]. The absorption peak is very strong, e.g. A~0.9 when d1 and d2 are both 0.1μm. It’s 

possible that the sharp absorption peaks near 4μm are from the higher order modes trapped 

below circular patches or due to the strong diffraction effects happening at wavelengths 

below the wavelength equal to the array period (4.5μm) [1]. 

 

 

 

 

 

 

 

 

Figure 4.4. Calculated absorption of the microstrip patch structure including absorption at 

lower wavelengths. 
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may act as a metamaterial in some aspects. The thickness of the circular patches almost does 

not affect the primary resonance. Smaller diameter of the circular patches will decrease the 

magnitude of the primary resonance and make the primary resonance narrower. 
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